

Photogrammetry II Lecture 3: Image measurements and refinements

Dr. Eng. Hassan Mohamed Hassan <u>Hassan.hussein@feng.bu.edu.eg</u> Geomatics Department

What you learn from this lecture

- 1. Coordinate system for image measurement.
- 2. Photographic measurement using comparators.
- 3. Radial Lens distortion
- 4. Atmospheric refraction distortion.
- 5. Earth curvature distortion.

Fiducial Marks

- Fiducial marks are small targets on the body of metric cameras.
- Their positions relative to the camera body are known through a calibration procedure.
- They define the image coordinate system.
- In that system, the position of the perspective center is known.

Coordinate system for image measurement

- Metric camera with FM rectangular axis system by joining FM is commonly adopted.
- The x axis parallel and positive in the direction of flight.
- > The positive y axis is 90°, from positive x.
- The origin of the coordinate system is the intersection of F.M lines.
- Position of any image point is given by its rectangular coordinates xa and ya.
- xa is perpendicular distance from y axis to a. ya is perpendicular distance from x axis to a.

Photographic measurement using comparators

- Comparators are highly accurate machines for measuring the xycoordinates of selected points in the image plane
- Stereo-comparators: coordinates are measured in a stereo-pair simultaneously.
- The machine/comparator coordinates are reduced to image coordinates (i.e., relative to the image coordinate system)

- The light ray changes its direction after passing through the perspective center.
- Radial lens distortion is caused by:
- Large off-axial angle
- Lens manufacturing flaws
- Radial lens distortion occurs along a radial direction from the principal point
- Radial lens distortion increases as we move away from the principal point

Negative

- Radial lens distortion, Δr as a function of r, is available in the camera calibration certificate in either one of the following forms:
- 1. Graphical form
- 2. Tabular form
- 3. Polynomial coefficients

 $\Delta r = k_1 r_1 + k_2 r_3 + k_3 r_5 + k_4 r_7$

- Radial lens distortion, Δr as a function of r, is available in the camera calibration certificate in either one of the following forms:
- 1. Graphical form
- 2. Tabular form
- 3. Polynomial coefficients

 $\Delta r = k_1 r_1 + k_2 r_3 + k_3 r_5 + k_4 r_7$

Symmetric Radial Distortion Parameters		Decentering Distortion Parameters		Calibrated Principal Point		4 <u>2</u> -	,		L.	-	points dist(mm) vs.	-	
k _o	0.5493×10 ⁻⁴	p ₁	-0.7953 × 10 ⁻⁷ mm ⁻¹	Xp	0.010 mm	-2 - -4 -	V0- 67	70402 5 05	_				
k ₁	$-0.5984 \times 10^{-8} \text{ mm}^{-2}$	<i>p</i> ₂	$0.1018 \times 10^{-6} \text{ mm}^{-1}$	y _p	-0.001 mm	-6 -	K0 = -6.779192 E-05 K1 = 1.533926 E-08 K2 = -6.784381 E-13			SURDEX Wild/Leica RC-30 Aviogon / 4-S			
k ₂	$0.1053 \times 10^{-12} \text{ mm}^{-4}$	<i>p</i> ₃	0 mm-2			-8 - -10 -	$dr = K0^*r + K1^*r^3 + K2^*r^5 +$ dx/x = dr/r						
k ₃	0 mm-6	<i>p</i> ₄	0 mm-4			-12 -	$dx = x^{*}(dr/r) dx = x^{*}(K0 + K1^{*}r^{2} + K2^{*}r^{4} +)$						
k ₄	0 mm ⁻⁸		C			-14 -16 0	20	40	60	80	100	13	

Atmospheric Refraction Distortion

- The light ray from the object point to the perspective center passes through layers with different temperature, pressure, and humidity.
- Each layer has its own refractive index.
- Consequently, the light ray will follow a curved not a straight path.
- The distortion occurs along the radial direction from the nadir point.
- It increases as the radial distance increases. is always negative -

Atmospheric Refraction Distortion

$$\blacktriangleright$$
 $\Delta \mathbf{r} = \mathbf{k} \mathbf{r} \left(1 + \frac{r^2}{f^2}\right)$

K is the atmospheric refraction coefficient.

$$k = 0.00241 \left\{ \frac{Z_o}{Z_o^2 - 6 Z_o + 250} - \frac{Z^2}{Z_o(Z^2 - 6 Z + 250)} \right\}$$

Zo is the flying height in kmZ is the ground elevation in km

> Xc=X
$$(1-\frac{\Delta r}{r})$$
, Yc=Y $(1-\frac{\Delta r}{r})$

Earth Curvature Distortion

- The Earth surface as reconstructed from the imagery is a spheroid.
- The Earth surface as defined by the GCP is flat
- we distort the image coordinates in such a way that the Earth surface as reconstructed from the imagery is flat. Δr is always positive +

$$\Delta r = \frac{H r^3}{2 R f^2}$$

Earth Curvature Distortion

$$\Delta r = \frac{H r^3}{2 R f^2}$$

- , ≽ H flying height,
 - r radial distance from the principal point,
 - R radius of the Earth (6370 Km),
 - F focal length
 - \succ rc = r + Δ r

> Xc=X
$$(1-\frac{\Delta r}{rc})$$
, Yc=Y $(1-\frac{\Delta r}{rc})$

Supplementary files:

- https://www.youtube.com/watch?v=Eo0MnUahGHM
- Elements of Photogrammetry with Applications in GIS, Fourth Edition. Paul R. Wolf, Bon A. Dewitt, Benjamin E. Wilkinson, 2014 McGraw-Hill Education

Please don't use this presentation without getting a permeation from its original owner

Thanks

Dr.Eng. Hassan Mohamed