Photogrammetry II

Lecture 3: Image measurements and refinements

Dr. Eng. Hassan Mohamed Hassan Hassan.hussein@feng.bu.edu.eg Geomatics Department

What you learn from this lecture

1. Coordinate system for image measurement .
2. Photographic measurement using comparators.
3. Radial Lens distortion
4. Atmospheric refraction distortion.
5. Earth curvature distortion.

Fiducial Marks

$>$ Fiducial marks are small targets on the body of metric cameras.
$>$ Their positions relative to the camera body are known through a calibration procedure.
$>$ They define the image coordinate system.
$>$ In that system, the position of the perspective center is known.

Coordinate system for image measurement

> Metric camera with FM rectangular axis system by joining FM is commonly adopted.
$>$ The x axis parallel and positive in the direction of flight.
$>$ The positive y axis is 90°, from positive x .
$>$ The origin of the coordinate system is the intersection of F.M lines.
> Position of any image point is given by its rectangular coordinates xa and ya.
$>x a$ is perpendicular distance from y axis to a. ya is perpendicular distance from x axis to a.

Photographic measurement using comparators

> Comparators are highly accurate machines for measuring the xycoordinates of selected points in the image plane
> Stereo-comparators: coordinates are measured in a stereo-pair simultaneously.
> The
machine/comparator coordinates are reduced to image coordinates (i.e., relative to the image coordinate system)

Image Coordinate Measurements

Comparator coordinates ($\mathrm{x}^{\prime}, \mathrm{y}^{\prime}$) \rightarrow

Radial Lens Distortion

$>$ The light ray changes its direction after passing through the perspective center.
> Radial lens distortion is caused by:

- Large off-axial angle
- Lens manufacturing flaws
> Radial lens distortion occurs along a radial direction from the principal point
> Radial lens distortion increases as we move away from the principal point

Radial Lens Distortion

Radial Lens Distortion

> Radial lens distortion, Δr as a function of r, is available in the camera calibration certificate in either one of the following forms:

1. Graphical form
2. Tabular form
3. Polynomial coefficients

$$
\Delta r=k_{1 r_{1}}+k_{2} r_{3}+k_{3} r_{5}+k_{4 r_{7}}
$$

Radial Lens Distortion

> Radial lens distortion, Δr as a function of r, is available in the camera calibration certificate in either one of the following forms:

1. Graphical form
2. Tabular form
3. Polynomial coefficients
$\Delta r=k_{1 r_{1}}+k_{2} r_{3}+k_{3} r_{5}+k_{4} r_{7}$

$$
\Delta r=k 1 r 1+k 2 r_{3}+k 3 r_{5}+k 4 r_{7}
$$

Radial Lens Distortion

Symmetric Radial Distortion Parameters		Decentering Distortion Parameters		Calibrated Principal Point	
k_{0}	0.5493×10^{-4}	p_{1}	$-0.7953 \times 10^{-7} \mathrm{~mm}^{-1}$	X_{p}	0.010 mm
k_{1}	$-0.5984 \times 10^{-8} \mathrm{~mm}^{-2}$	p_{2}	$0.1018 \times 10^{-6} \mathrm{~mm}^{-1}$	y_{p}	$-0.001 \mathrm{~mm}$
k_{2}	$0.1053 \times 10^{-12} \mathrm{~mm}^{-4}$	P_{3}	$0 \mathrm{~mm}^{-2}$		
k_{3}	$0 \mathrm{~mm}^{-6}$	p_{4}	$0 \mathrm{~mm}^{-4}$		
k_{4}	$0 \mathrm{~mm}^{-8}$				

Atmospheric Refraction Distortion

$>$ The light ray from the object point to the perspective center passes through layers with different temperature, pressure, and humidity.
$>$ Each layer has its own refractive index.
> Consequently, the light ray will follow a curved not a straight path.
$>$ The distortion occurs along the radial direction from the nadir point.
$>$ It increases as the radial distance increases. is always negative -

Atmospheric Refraction Distortion

$>\Delta \mathrm{r}=\mathrm{kr}\left(1+\frac{r 2}{f 2}\right)$
$>\mathrm{K}$ is the atmospheric refraction coefficient.
$k=0.00241\left\{\frac{Z_{0}}{Z_{0}^{2}-6 Z_{0}+250}-\frac{Z^{2}}{Z_{0}\left(Z^{2}-6 Z+250\right)}\right\}$
$>\mathrm{Zo}$ is the flying height in km
$>\mathrm{Z}$ is the ground elevation in km
$>\mathrm{Xc}=\mathrm{X}\left(1-\frac{\Delta \mathrm{r}}{r}\right), \mathrm{Yc}=\mathrm{Y}\left(1-\frac{\Delta \mathrm{r}}{r}\right)$

Earth Curvature Distortion

$>$ The Earth surface as reconstructed from the imagery is a spheroid.
> The Earth surface as defined by the GCP is flat
$>$ we distort the image coordinates in such a way that the Earth surface as reconstructed from the imagery is flat. Δr is always positive +

$$
\Delta r=H r^{3} / 2 R \mathrm{f}^{2}
$$

Earth Curvature Distortion

$$
\Delta r=H r^{3} / 2 R \mathrm{f}^{2}
$$

$>\mathrm{H}$ flying height,
$>r$ radial distance from the principal point,
$>\mathrm{R}$ radius of the Earth $(6370 \mathrm{Km})$,
$>F$ focal length
$>r \mathrm{rc}=\mathrm{r}+\Delta \mathrm{r}$
$>\mathrm{Xc}=\mathrm{X}\left(1-\frac{\Delta \mathrm{r}}{r c}\right), \mathrm{Yc}=\mathrm{Y}\left(1-\frac{\Delta \mathrm{r}}{r c}\right)$

Supplementary files:

> https://www.youtube.com/watch?v=EoOMnUahGHM
> Elements of Photogrammetry with Applications in GIS, Fourth Edition. Paul R. Wolf, Bon A. Dewitt, Benjamin E. Wilkinson, 2014 McGraw-Hill Education

Please don't use this presentation without getting a permeation from its original owner
Thanks

Dr.Eng. Hassan Mohamed

